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Abstract 

We propose our segmentation model based on Convolution Neural network. Facing the 

imbalance data problem in segmentation, we adopt DSC loss as loss function when training 

our network. Apart from exploring its benign properties in theory, we design a novel model 

to show its effect. Drawing the ideas from dilation convolution [1] and dense network [2], we 

propose the dense dilation spatial pyramid pooling structure in our network as well as encode 

and decode network. In order to train out model, we do our experiments in the dataset of 

PROMISE 12. 

  

1 Method 

 

1.1 Pre-process 

The training dataset in PROMISE 12 contains 50 volumetric transversal T2-weighted MRIs of 

prostate, which also includes the ground-truth. For independent evaluation, the testing 

dataset contains 30 MRIs and their ground-truth are held by the organizer. During the pre-

processing step, similar to V-net [3], firstly we use the N4 bias filed correction function of the 

ANTs framework to normalize the datasets and then resample them to a common resolution 

of 1*1*1.5 mm. By varying the position of the control points with random quantities obtained 

from Gaussian distribution with zero mean and 15 voxels standard deviation, we apply 

random deformations to the training scans.  

 

1.2 Network architecture 

Inspire by some outstanding approaches in semantic and medical segmentation, such as Fully 

Convolution Network and U-Net model, we proposed our RDD segmentation network [figure 



one]. The whole RDD network consists of three parts, including a encode subnet, a decode 

subnet and the dense dilated convolution block [figure two]. We would describe each 

component of our RDD network next. 

 
Combining together into encode subnet, the convolution layers with more than one stride 

extract features of the input images, and pooling layers do down-sampling and thus reduce 

the spatial resolution. Oppositely, the decode network consists of deconvolution layers and 

convolution layers, and the deconvolution layers do up-sampling and thus improve the 

resolution of feature maps. When passing through the decode network, they can regain the 

size as input image. According to the diverse resolutions, we divide these two subnets into 

several stages, where blocks are residual ones with short residual connection. 

To achieve more precise results, unlike the U-net [4] simply using the concatenation, we try 

to use long residual connections element-wisely, which share the features in encode subnet 

to the same stage (i.e. with the same solution) of decode subnet. 

In semantic segmentation tasks, since the model are required to do the pixel-wise 

classification, we need to preserve contextual information as much as possible. Therefore we 

employ the dilate convolution [1], also called atrous convolution. 

When dealing with the dilation convolution layers and image level feature, contrast to Atrous 

Spatial Pyramid Pooling structure (ASPP) [5] concating them parallel, we use densely 

connection structure , so not only we could concate the multi-level features side by side, but 



also reuse those dense features.  

 

1.2 DSC Loss 

Basing on the Dice Similarity Coefficient, we adopt a novel loss function, Dice loss. 

The definition of DSC Loss: DSC Loss=1 − #$%&$'
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Here, for a brief statement, 𝑃+ and 𝑃, mean two probability vector, and 𝑃, ∈ 𝑋/, 𝑃+ ∈ 𝑋/. 

X ∈ 0,1 .		 · # denotes the l2 norm. 

In order to explain the benign properties of DSC loss, we give the theorem one. 

Theorem one. Let P, be a fixed point over 𝑋/. Let z be a random variable over other space 

Ζ. Let g: Ζ×	𝑅: → 𝑋/	be a function, that will be denoted 𝑔+ 𝑧  with z the first coordinate 

and θ the second. Let P+ denotes the outcome of 𝑔+ 𝑧 , and P+ ∈ 𝑋/. Actually, Z is the 

space of target photos, P,(𝑧) is the ground-truth of z, and P+(𝑧) is the output of the 

network. Then, 

1. If g is continuous in θ, so is DSC(P,, P+).  

2. If g is locally Lipchitz and satisfies regularity assumption 1, then DSC(P,, P+) is continuous 

everywhere, and differentiable almost everywhere. 

Proof: See Appendix A. 

 

2 Evaluation 

2.1 Training protocol 

When training the network, we adopt stochastic gradient descent (SGD). Due to the limit of 

the GPU, we set batch size in one. Besides, in the training, we use an initial learning rate of 

0.001, weight decay of 0.005 and momentum of 0.99, and the learning rate reduces 80% in 

every 10000 iteration. Training time of our model ranges between 8 and 10 hours.  

 

2.2 Results 

To show the effect of our loss and network, we design several controlled experiments, and 

we attain the average DSC value of 86.42% in validation set when using the state-out-of-art 

network. 
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